1. Find I_x in the network in Fig. (Verify by ADS)

2. Determine I_L in the circuit in Fig. (Verify by ADS)

3. Find I_1 in the network in Fig. (Verify by ADS)

4. Find I_1 in the circuit in Fig.

5. Find I_1 in the network in Fig. (Verify by ADS)

6. Find I_x, I_3, and I_4 in the network in Fig.
7. Find V_1, V_2 and V_3 in the network in Fig.

8. Find V_o in the network in Fig. (Verify by ADS)

9. Find V_o in the circuit in Fig.

10. The 10-V source absorbs 2.5 mW of power. Calculate V_{ba} and the power absorbed by the dependent voltage source in Fig. (Verify by ADS)

11. Find V_1, V_2, and V_3 in the network in Fig.

12. Find V_1 in the network in Fig.
13. Find the power supplied by each source, including the dependent source, in Fig. (Verify by ADS)

14. Find the power absorbed by the dependent voltage source in the circuit in Fig.

15. Find the power absorbed by the dependent source in the circuit in Fig.

16. Determine I_L in the circuit in Fig. (Verify by ADS)

17. Find the power absorbed by the dependent source in the network in Fig.

18. If $V_2 = 4 \, \text{V}$ in Fig. P2.91, calculate V_y. (Verify by ADS)

19. Given $V_o = 12 \, \text{V}$, find the value of I_A in the circuit in Fig.
20. Find the value of g in the network in Fig. such that the power supplied by the 3-A source is 20 W.

\[
\begin{align*}
I_x & = 1 \Omega \\
2 & \Omega
\end{align*}
\]

gI_x

21. Find V_o in the network in Fig. (Verify by ADS)

\[
\begin{align*}
I & = 24 \text{ V} \\
2 & \text{k} \Omega
\end{align*}
\]

22. Find I_o in the circuit in Fig.

\[
\begin{align*}
V_n & = 4 \text{ A} \\
2 & \Omega \\
1 & \Omega
\end{align*}
\]

23. Find V_o in the circuit in Fig.

\[
\begin{align*}
I_S & = 12 \text{ V} \\
3 & \text{k} \Omega
\end{align*}
\]

24. Find V_x in the network in Fig. (Verify by ADS)

\[
\begin{align*}
4 & \text{A} \\
6 & \Omega \\
3 & \Omega \\
2 & \Omega \\
1 & \Omega
\end{align*}
\]

25. A typical transistor amplifier is shown in Fig. Find the amplifier gain G (i.e., the ratio of the output voltage to the input voltage).

\[
\begin{align*}
V_S & = 250 \text{ mV} \\
4 \times 10^6 I_b & \quad 300 \Omega
\end{align*}
\]
26. Given the circuit in Fig, solve for the value of k.

27. Find the value of k in the network in Fig, such that the power supplied by the 6-A source is 108 W.