جهان خداداد مهندسی بنیاد

تمینات سری هشتم درس ریاضیات هندری

مورد تحول...

1- اعداد مختلط زیراکه در فرم دکارتی اندبندی، و یا در فرم قطعی اندبندی فرم دکارتی تبدیل خواهد شد.

z = 3i	z = 1 - i	z = i - 1
z = 2 - 4i	z = 2 + 4i	z = -1 - i
z = 2e^iπ	z = -√2e^i\(\frac{3\pi}{4}\)	z = 3e^i\(\frac{\pi}{4}\)

2- جواب هرکدام از معادلات زیر را بیابید.

| z - j | = 2

| z + 2j | + | z - 2j | = 6

\[
| z + 3 | + | z - 3 | = 4

\[
\frac{| z - 3 |}{| z + 3 |} = \frac{1}{2}

3- ثابت کنید: در جواب هرکدام از معادلات زیر را بیابید.

\[
\cos\left(\frac{2\pi}{n}\right) + \cos\left(\frac{4\pi}{n}\right) + \ldots + \cos\left(\frac{2(n-1)\pi}{n}\right) = -1

\[
\sin\left(\frac{2\pi}{n}\right) + \sin\left(\frac{4\pi}{n}\right) + \ldots + \sin\left(\frac{2(n-1)\pi}{n}\right) = 0

4- مجموع نقاطی از صفحه اعداد مختلط که در معادلات زیر را به دست آورده‌اید.

\[
| z - i | + | z + 8 - 2i | = 9

\[
3m(z - i) = 9\overline{Re}(z + 1)

\[
| z |^2 + 3\overline{Re}(z^2) = 4

\[
z^2 + \overline{z}^2 = 4

5- مقدار تابع \(f(z) = \ln(z) \) را برای \(z = 2i, z = 1 + i, z = i^3, z = \frac{1-i}{2} \) به دست آورید.

شاخه اصلی است,

6- مقادیر زیر را به دست آورد:

\[
\sin(1-i)
\]
\[
\sinh(2+i)
\]
\[
\ln(\cos(i))
\]
\[
\cos(1+i)
\]
\[
\cosh(i)
\]
\[
\cosh(\ln(i))
\]
\[
\sinh(\cos(i))
\]
\[
e^{\sin(2-i)}
\]
7- مقایسه سریابی دست آورده و مقدار اصلی هرکدام را مشخص نمایید.

\[f(z) = \frac{1}{z} \]
\[z = 1, z = -1, z = i \]
\[z = 2i \]
\[z = (1-i)^{i} \]
\[z = i^i \]
\[z = 2^{-i} \]
\[z = (-1+i)^{-3i} \]

8- نواحی زیر را در صفحه اعداد مختلط مشخص نمایید.

\[|z-i| \geq 2 \]
\[3m(z+3i) \leq 3 \]
\[1 < 9\Re(z+3) \leq 3 \]
\[3 < z-1+i < 5 \]
\[3m(z+i) < 4 \]
\[\left| \frac{z+i}{z-2} \right| < 4 \]

9- قسمت حقیقی و ویژه‌ای از توابع زیر را در صفحه اعداد مختلط مشخص نمایید.

\[f(z) = \frac{2z+1}{z} \]
\[g(z) = i \left| z \right|^2 \]
\[h(z) = \frac{z^5}{\left| z \right|^4} \]
\[k(z) = \frac{z + 1}{e^z} \]
\[s(z) = \sinh(z-i) \]
\[p(z) = \cos(z) \]
\[y(z) = -2(xy + x) + i(x^2 - 3y - y^2) \]
\[D(z) = e^y \cos(x) + ie^y \sin(x) \]
\[L(z) = \text{Arg} \left(\frac{1}{z} \right) \]
\[U(z) = x^2 - y^2 - 2y + i(2x-2xy) \]
\[Q(z) = e^{-\theta} \cos(\ln(r)) + j e^{-\theta} \sin(\ln(r)) \]

10- شرط کوشی و ویژه‌ای را برای هرکدام از توابع زیر را در صفحه اعداد مختلط مشخص نمایید.

\[f(z) = \frac{2z + 1}{z} \]
\[g(z) = i \left| z \right|^2 \]
\[h(z) = \frac{z^5}{\left| z \right|^4} \]
\[k(z) = \frac{z + 1}{e^z} \]
\[s(z) = \sinh(z-i) \]
\[p(z) = \cos(z) \]
\[y(z) = -2(xy + x) + i(x^2 - 3y - y^2) \]
\[D(z) = e^y \cos(x) + ie^y \sin(x) \]
\[L(z) = \text{Arg} \left(\frac{1}{z} \right) \]
\[U(z) = x^2 - y^2 - 2y + i(2x-2xy) \]

11- بررسی کیفیت آیا توابع زیر همازبوده‌اند، در صورت همازبودن مساوی‌سازی‌های را نویسید.

\[U(x, y) = e^y \sin(x) \]
\[U(r, \theta) = r^3 \cos(3\theta) \]
\[U(r, \theta) = \theta \]
\[U(x, y) = \frac{x}{\sqrt{x^2 + y^2}} e^{\frac{1}{\sqrt{x^2 + y^2}}} \]
\[U(x, y) = x^3 - 3xy^2 \]
\[U(x, y) = 2y - 3x^2y + y^3 \]

12- افزودنی و موفقیت و سیب‌سنگی

افروز